
DOI 10.1007/s11042-012-1321-8

Content-aware optimization on rate-distortion
and network traffic for scalable video
multicast networks

Junni Zou ·Lu Jiang ·Chenglin Li

© Springer Science+Business Media New York 2012

Abstract This paper aims to optimize the content-aware prioritization of scalable
video multicast, which is coupled with multipath streaming and network coding
based routing. It constructs multiple layer distribution meshes for the scalable video
stream to minimize the total video distortion at all the receivers, determines the
base layer meshes with minimum costs to maintain application-layer QoS and the
layer synchronization of SVC streaming, and improves the network throughput by
encouraging path-overlapping transmissions and thus allowing bandwidth sharing
among different receivers for the same video layer by utilizing network coding.
The targeted problem is formulated into a minimization programming in which the
quality variation between layers, the transmission cost of the base layer, as well as
the efficient resource utilization are jointly considered. By decomposition and dual
approach, the global convex problem is solved by a two-level decentralized iterative
algorithm. The implementation of the distributed algorithm is discussed with regard
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to the communication overhead, and the convergence performance is validated
by numerical experiments. Packet-level simulations demonstrate that the proposed
algorithm could approximately achieve the maximum flow rates determined byMax-
Flow Min-Cut Theorem and benefit the overall received video quality.

Keywords Scalable video coding ·Multicast ·Network coding ·Rate distortion ·
Distributed algorithm

1 Introduction

Multirate multicast is superior to single rate multicast for media streaming distribu-
tion to a set of heterogeneous receivers [18]. Multirate multicast allows receivers to
subscribe contents in compliance with the available bandwidth by joining a proper
subset of multicast sessions. With the development of layered and scalable video
coding [25], layered multicast emerges a variant of multirate multicast for scalable
media streaming [3]. In layered multicast, on one hand, video can be transmitted and
decoded at multiple bit rates with progressively improved video quality. On the other
hand, rate adaptation is implemented at both the sender/receiver and intermediate
network nodes, while achieving highly efficient video rate-distortion performance.
Therefore, joint optimization on multirate flow control and video distortion is of
paramount importance in scalable streaming dissemination.

An SVC elementary stream is encoded to contain an H.264/AVC compatible
base layer and represent the bit stream in the fully scalable representation. Utilizing
SVC technique, a scalable bit stream could be represented in two different ways:
a layered representation (layered scalable) or a flexible combined scalability (fully
scalable) [2]. Generally, the full scalability can benefit scenarios of unicast, where
the target stream can be extracted at any bit rate from the SVC elementary stream in
terms of single receiver’s capability. In comparison, the layered scalability can benefit
multicast distribution by offering simple adaptation to heterogeneous receivers, i.e.,
different receivers can subscribe to different combinations of layers under the con-
straints of network capacity and layer dependency. For practical streaming multicast,
we adopt the layered scalability and assume that the SVC video stream is encoded
into a set of multiple layers where higher layers can be viewed as progressively
refinable layers for the lower layers to update the video from one quality to the next
[2]. Rooted in a base layer, an SVC stream extends one or multiple enhancement
layers with a flexible multi-dimension layer structure (at leat one dimension from
temporal, spatial, or SNR) to provide various operating points in spatial resolution,
temporal frame rate, and video reconstruction quality.

Rate control of scalable video streaming has been studied extensively in the past
[11, 13, 27, 30]. For example, Zhu et al. [30] presented a packet-based rate adaption
scheme for minimizing total distortion of multiple video streams for application-
layer multicast with multipath transmission. van der Schaar et al. [27] proposed a
packet-based channel access scheme for scalable streaming over wireless networks.
A message-based pricing and access coordination scheme was presented in [11].
To support heterogeneous device capability in the video multicasting/broadcasting,
statistical multiplexing for layered multicast was investigated with a complexity
measure among all programs in all layers [13]. These rate control methods could
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improve the performance of scalable video streaming over networks, however,
they used predetermined distribution trees to improve the network throughput
and overall video quality, which might cause decoding problem in scalable video
streaming over networks since the synchronization among SVC layers has not
been adequately addressed. For example, along predetermined distribution trees,
video packets from higher layers may arrive before or without packets from lower
layers, which will cause decoding failure. To address this layer synchronization
issue and allocate paths with lower cost to lower layers according to different SVC
streams, in this paper, we study rate-distortion minimization problem for scalable
streaming multicast networks, where each receiver can have multiple alternative
paths through the coded network (i.e., networks that use network coding) to receive
the subscribed SVC layers in an incremental order. Also, the network coding assisted
multirate multicast is employed to enhance network transmission performance in a
further way.

The first optimization model for multirate multicast problems was proposed by
Kar et al. [14, 15], and a distributed algorithm for the receiver to receive service at
any rate within a continuous set of rates was proposed in [24]. Extending from one
source scenario to maximize the overall utility of multiple sources constrained by
the sources’ transmission rates, a flow control and optimization scheme is presented
in [20]. Based on this approach, a number of source-oriented rate control schemes
have been developed [11, 27, 30], which have been previously introduced as rate
control schemes for scalable video streaming. The multipath routing combined with
congestion control was studied in [12]. Also, inter-session fairness for layered video
multicast was investigated by considering layer-based congestion sensitivity, which
lets different video layers have different sensitivity to congestion [17] to address the
layer synchronization issue. However, these existing methods on network perfor-
mance optimization have been focused on only resource allocation among receivers,
the problem of utility maximization for heterogeneous receivers to subscribe to
multiple video coding layers with prioritized multirate multicasting has not been
adequately addressed.

Network coding represents a novel paradigm in information theory that first
proposed by Ahlswede et al. in 2000 [1]. It extends the functionality of network
nodes from storing/forwarding packets to performing algebraic operations on data
received. Li et al. [19] proved that the max-flow multicast throughput can be reached
through the linear network coding. Chen et al. [7] developed two adaptive rate con-
trol algorithms by considering networks with and without coding subgraphs. Wu [28]
extended network utility maximization (optimizing QoS of the entire network based
on a specific utility function) to network coding based multicasting. The authors
in paper [29] attempted to address the layered multicasting problem by including
network coding and multipath constraints in the objective function, and proposed a
solution called LION algorithm. However, they simply formulated it as an integer
linear programming without utility maximization and the prioritized path costs of
different layered multicasting groups. Moreover, they only provided a heuristic ap-
proach instead of a rigorous distributed algorithmwith global optimality. As a further
improvement, we [31] proposed a prioritized flow optimization formulation for SVC
and multicast over heterogeneous networks, which used the path cost and prices
of each layer as the priority parameters to capture layer synchronization of SVC
streaming. Although path cost of each layer and the layer synchronization problem
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have been considered in this work, the successful decoding of the based layer cannot
be guaranteed at all times especially when the path cost of higher layers are much
smaller than that of the base layer. Moreover, the overall communication network in
this work is simply modeled by a generalized network utility maximization problem,
which did not take into account distortion property for video applications. In this
paper, we consider rate-distortionmodeling from the perspective of application-layer
QoS, and improve optimization formulation by minimizing the total received video
distortions of all receivers while also emphasizing on minimizing both the delay of
the base layer to guarantee a basic quality for all receivers and minimizing the actual
bandwidth assigned to all SVC layers to consider the efficient network resource
utilization.

In this paper, we consider content-aware prioritization of scalable video cod-
ing and investigate how it could be coupled with multipath video streaming and
network coding based routing to achieve optimum performance. To minimize the
total video distortion at all the receivers, we propose an efficient flow control and
resource allocation scheme. It constructs multiple layer distribution meshes for
the scalable video stream with multipath routing, and determines the base layer
meshes with minimum costs so as to guarantee application-layer QoS and tackle the
layer synchronization issue of SVC streaming. Also, a specific strategy to efficiently
allocate paths for receivers with minimum bandwidth consumption is proposed to
improve the network throughput, which encourages path-overlapping transmissions
and allows bandwidth sharing among different receivers for the same video layer by
utilizing network coding. We formulate the flow control problem into a minimization
programming in which the quality variation between layers, the transmission cost of
the base layer, as well as the efficient resource utilization are jointly considered. By
using primal decomposition and primal-dual approach, the global convex problem is
solved by a two-level decentralized iterative algorithm. The implementation of the
distributed algorithm is discussed with regard to the communication overhead, and
the convergence performance of the proposed algorithm is validated by numerical
experiments. Packet-level simulations demonstrate that the algorithm could approx-
imately achieve themaximum flow rates determined byMax-FlowMin-Cut Theorem
and benefit overall received video quality.

The remainder of this paper is organized as follows. Section 2 describes the
motivation for SVC streaming multicast networks. In Section 3, we formulate the
problem of rate allocation and performance optimization for scalable video coding
and multicast over networks. In Section 4, we propose a decentralized algorithm
for the original scheme, and discuss implementation issues related to the algorithm.
Numerical and simulation results are presented in Section 6. Finally, the paper
concludes in Section 7.

2 Motivations

Our motivations in this paper could be derived from two aspects. The first one is
related to the layer synchronization of SVC streaming, which requires that each
receiver subscribes to scalable layers in an incremental order, since the successfully
received higher layers cannot be decoded without the presence of lower layers. In
other words, there exists layer dependency and priority constraint among scalable
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video layers, where higher layers are dependent on the low layers and the low layers
are with higher priority than the higher layers. Therefore, within the context of SVC,
maximizing the total number of received layers or the overall throughput cannot
guarantee the quality of video streaming, since the decoding of the enhancement
layers depends on packets of the base layer. The layer synchronization requirement
would lead the total utility of maximum received layers into suboptimal performance,
where some higher layers, though successfully received, cannot be decoded because
of the lack of their corresponding lower layers. Due to the lack of layer dependency
and priority consideration in constructing multicasting paths, the higher layers may
overwhelm the lower layers by low path costs and prices. That is, when packets of
dependent lower layers are not all available till playback time, the packets of higher
layers will have to be discarded, even if the bandwidth has been allocated for higher
layers to maximize total utility for all receivers. This unexpected result obviously
deviates from the original optimization objective.

To clearly illustrate this problem, we take a simple example. The network shown
in Fig. 1a contains one source S, four relay nodes R1 ∼ R4, and two receivers T1, T2,
with the capacity marked on each link. Assume the source generates an SVC stream
into three layers, each with rate of 2 (data units/second). According to the Max-Flow
Min-Cut Theorem, the max flow to receivers T1 and T2 are 4 and 6. Thus, T1 and T2

can subscribe to 2 layers and 3 layers respectively. For simple specification, assume
the data suffer similar propagation delay along each link.

When the LION model [29] is adopted to maximize the network throughput, its
distribution meshes of the base layer and the first enhancement layer are shown
in Fig.1b and c (with solid lines for T1 and dashed lines for T2, and the associated
numbers on each link specifying the bandwidth assigned for T1/T2 on each layer).
Observing the distribution mesh for T1, we can find that it crosses four links
(S → R2 → R3 → R4 → T1) at the base layer, while it only takes the propagation
delay of two links (S → R1 → T1) at the enhancement layer, which introduces a
reversed propagation delay of two links between the base layer and the enhancement
layer. The layer synchronization of SVC decoding in T1 will be greatly influenced
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Fig. 1 An example of flow distribution meshes, where a is the initial topology, b and c are
distribution meshes constructed by LION algorithm for the base layer and the first enhancement
layer, respectively
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by such reversed propagation delay, resulting in heavy buffer management and
decoder burden. As the reversed propagation delay between lower and higher layers
increases, the burden of buffer and decoder at the receivers would also be increased
in order to have the higher layer successfully decoded.Moreover, this dilemmawould
be more critical when either the scale of the network or the number of total scalable
video layers becomes large.

The second issue is associated with efficient bandwidth utilization. Under multi-
path routing mechanism, each receiver would have multiple candidate paths from
the source to receive the video streams. To receive the same layer with minimum
bandwidth consumption, the paths that contain more joint links with other receivers’
paths are preferred. As shown in Fig. 2a, the example topology consists of a source
node S, three relay nodes R1 ∼ R3, and three receiver nodes T1 ∼ T3, and the
available capacity in the number of packets is also marked on each link. Suppose
the base layer has 3 packets to be transmitted. Also, assume the data suffer similar
propagation delay along each link. Figure 2b and c display the distribution meshes
for the base layer by two different routing strategies. We can find that, although three
receivers successfully achieve the base layer with roughly similar latency in the two
strategies, their aggregate bandwidth consumptions are quite different (the former
consumes 17, while the latter uses 14). The delivery of the base layer packets with
two strategies are shown in Fig. 2d and e, where a, b and c denote three packets in
the base layer and b + c corresponds to the packet after network coding operation. It
is observed from Fig. 2e that due to the selection of overlapping paths S → R2 → T1

and S → R2 → T3 as well as the employment of network coding, the latter solution
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Fig. 2 An example of distribution meshes on the base layer by two different routing solutions, where
a is the topology, b and c are the base layer mesh, d and e are packet transmissions
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utilizes less bandwidth at the base layer, thus leaves more available resource for the
higher layers.

3 Problem statement

3.1 Notations

The video distribution network can be modeled as a directed graph G(V, E), where
V is the set of nodes and E is the set of directed links. The set V comprises three
kinds of nodes: S, R and T, representing the set of source nodes, relay nodes and
receiver nodes respectively. The SVC stream is encoded into M layers, with each
layer m corresponding to a multicast session at expected transmission rate Bm. For
any link (i, j), let cij denote its capacity, and f m

ij represent the bandwidth consumed
on layer m.

Suppose from the source to receiver t there exist multiple alternative paths P(t).
For each receiver t, let Rm

t,k denote the information flow rate assigned to its k-th path
for transmitting packets of layer m. As a path consists of consecutive links, we use a
matrix Z t to denote whether the links are included in t’s paths:

Z tm
k,ij =

{
1, if edge (i, j) ∈ path k on layer m ;

0, otherwise.

The ultimate goal of video streaming is to provide receiver the best video quality.
To estimate the quality of the SVC video stream that is received by each destination
node, in this work, we take the rate-distortion model in [26]:

De(Re) = θ

Re − R0
+ D0

where De is the distortion of the encoded video sequence, measured by the mean
squared error (MSE), and Re is the encoded rate. The variables θ , R0 and D0 are the
parameters of the R-D model.

When receiver t accesses to a new layer m, its receiving rate increases from R to
R + �R. By Taylor expansion, we approximate De(R + �R) by the first two terms of
its Taylor series, the corresponding quality variation between layers goes as follows:

�De = De(R + �R) − De(R)

= D′
e(R) · �R + 1

2
D′′

e (R) · �R2 + o(�R2)

≈ − θ

(R − R0)2
· �R + θ

(R − R0)3
· �R2

Namely, for any receiver t with flow rate Rm
t on layer m, its distortion decrement

can be described as a strictly convex function of Rm
t :

�De(Rm
t ) = − θ

(
∑m−1

i=0 Ri
t − R0)2

· Rm
t + θ

(
∑m−1

i=0 Ri
t − R0)3

· (Rm
t )2 (1)

Generally, receiver t has multiple alternative paths to join the multicast session m,
but not all these paths are optimal ones. Analogous to practical routing, the optimal
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paths can be chosen in a variety ways based on different considerations, such as delay,
resource usage or commercial charge. Inspired by the generic cost function definition
[4], we propose the following path cost function:

ρ(Rm
t,k) =

∑
(i, j)∈E

ztm
k,ij ·

Rm
t,k

cij − Rm
t,k

+ dt
k · Rm

t,k (2)

According to [4], receiver t’s congestion in terms of queuing delay on each link
in layer m is a function of ongoing information flow rate Rm

t,k and the capacity cij

of that link. Using M/M/1 queuing model [16], the average queuing delay on each
link can be expressed by 1/(cij − Rm

t,k), and the total queuing delay on that link
becomes Rm

t,k/(cij − Rm
t,k). Consequently, the first part of (2) represents the sum of

queuing delay at links that belongs to that path. In the second term, dt
k is a parameter

corresponding to the average propagation delay over path k normalized by the
average packet size. Therefore, the second term, dt

k · Rm
t,k denotes the propagation

delay on path k. With this definition, ρ(Rm
t,k) denotes the end to end delay of

information flow within layer m transmitting to receiver t along its k-th path and
is a differentiable and convex function.

3.2 Optimization problem

For a given SVC streaming multicast network, we aim at maximizing the overall
video quality (i.e., minimizing the total video distortion) of all receivers, while
satisfying content priority of the base layer and minimum bandwidth utilization at
all the layers. Mathematically, it can be formulated as:

P1: minimize O(R, f)

=
∑
t∈T

∑
m∈M

�De

⎛
⎝ ∑

k∈P(t)

Rm
t,k

⎞
⎠ +

∑
t∈T

∑
k∈P(t)

ρ(R1
t,k) +

∑
m∈M

∑
(i, j)∈E

f m
ij

subject to

1)
∑

k∈P(t)

(
Z tm

k,ij · Rm
t,k

)
≤ f m

ij , ∀(i, j) ∈ E, ∀m ∈ M, ∀t ∈ T;

2)
∑
m∈M

f m
ij ≤ cij, ∀(i, j) ∈ E;

3) 0 ≤
∑

k∈P(t)

Rm
t,k ≤ Bm, ∀m ∈ M, ∀t ∈ T;

The objective function O(R, f) consists of three parts. The first term represents the
total quality variation between layers. The second term defines the overall end-to-
end latency for the base layer dissemination. As the base layer makes predominated
contribution in video data reconstruction, we emphasize on minimizing the delay
of the base layer to guarantee a basic quality for all the receivers. The last term
denotes the bandwidth assigned at all the layers. Clearly, it should be diminished
as much as possible on the premise that all the receivers could successfully receive
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their desired contents. For an optimal overall video quality, we attempt to seek an
aggregate minimization solution that takes into account these three factors.

Constraint 1) represents the relationship between information flow rate and actual
bandwidth consumption within each layer on each link, where network coding is
applied to information flows of the same video layer. With network coding, different
receivers will not compete for link bandwidth within the same session. Therefore,
the actual bandwidth consumption on link (i, j) for layer m is equal to the largest
information flow rate of all the receivers.

Constraint 2) ensures that the total bandwidth consumption of each link on
different layers do not exceed the link capacity. Constraint 3) gives the upper bound
of the information flow rate allocated to each receiver at each layer, i.e. for each
receiver, the sum of information flow rate for transmitting layer m over all P(t) paths
cannot exceed the expected transmission rate Bm.

Define Rt = [R1
t,1, · · · , R1

t,|P(t)|, R2
t,1, · · · , R2

t,|P(t)|, · · · , RM
t,1, · · · , RM

t,|P(t)|] and R =
[R1, · · · , RT ]T . Also let Rt =

{
Rt

∣∣∣ 0 ≤ ∑
k∈P(t) Rm

t,k ≤ Bm , for all m and k
}
, t ∈ T ,

and R denote the Cartesian product of Rt (t ∈ T), then Problem P1 can be rewritten
as:

P2: minimize
R∈R

∑
t∈T

∑
m∈M

O(R, f)

subject to

1)
∑

k∈P(t)

(
Z tm

k,ij · Rm
t,k

)
≤ f m

ij , ∀(i, j) ∈ E, ∀m ∈ M, ∀t ∈ T;

2)
∑
m∈M

f m
ij ≤ cij, ∀(i, j) ∈ E. (3)

It can be verified that the objective function and the constraint set in P2 are all
convex [6]. Thus, there exists an unique optimal solution to P2 which can be easily
obtained by the centralized algorithms. However, the drawback of a centralized
solution is that it requires a central node to collect global information such as the
assigned flow rates on all links, and to perform all the computations. Such solution
could be very costly and sometimes infeasible in practice. As the network size grows,
it is preferable to solve the problem in a distributed manner.

4 Distributed algorithm

4.1 Primal decomposition

It is difficult to directly solve the problem P2 with Lagrange duality, because of the
interaction between variables f m

ij and Rm
t,k in Constraint 2). If we fix the variables f m

ij ,
P2 can be decoupled with respect to the variables Rm

t,k. Following this assumption,
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we adopt the primal decomposition approach [23] and solve P2 by a two-level
optimization procedure:

P2a : minimize
R∈R

∑
t∈T

∑
m∈M

O(R, f)

subject to :
∑

k∈P(t)

(
Z tm

k,ij · Rm
t,k

)
≤ f m

ij , ∀(i, j) ∈ E, ∀m ∈ M, ∀t ∈ T; (4)

P2b : minimize
R∈R

∑
t∈T

∑
m∈M

Ô(f)

subject to :
∑
m∈M

f m
ij ≤ cij, ∀(i, j) ∈ E. (5)

Problem P2a performs a low-level optimization, which can be further decomposed
into a set of sub-problems under the condition that f is fixed. Problem P2b performs
a high-level optimization, which fulfills the update of variable f. The optimal value
of the objective function of the low-level optimization is locally optimal. It approxi-
mates to the global optimality by using the results of the high-level optimization.

4.2 Two-level optimization update

(1) Low-leveloptimization update The Lagrangian dual of Problem P2a is defined
as:

L(R, λ, λ, λ) =
∑
t∈T

∑
m∈M

O(R, f) +
∑
t∈T

∑
m∈M

∑
(i, j)∈E

λtm
ij

⎡
⎣ ∑

k∈P(t)

(Z tm
k,ij · Rm

t,k) − f m
ij

⎤
⎦ (6)

where λtm
ij is the Lagrange multiplier.

The Lagrange dual function L(R, λ, λ, λ) is the maximum value of the Lagrangian over
primal variable λλλ, and it is given by: g(λλλ) = sup

R
L(R, λ, λ, λ).

The Lagrange dual problem is then formulated as: maximize
λλλ≥0

g(λλλ). Note that P2a

is equivalent to the above dual problem when the following Karush-Kuhn-Tucker
(KTT) conditions [6] are satisfied:

(1) ∂L(R,λ̂,λ̂,λ̂)

∂ Rm
t,k

∣∣∣∣
Rm

t,k=R̂m
t,k

= 0, ∀k ∈ P(t), ∀m ∈ M, ∀t ∈ T;

(2)
∑

(i, j)∈E
λ̂tm

ij

[ ∑
k∈P(t)

(Z tm
k,ij · R̂m

t,k) − f m
ij

]
= 0, ∀(i, j) ∈ E, ∀m ∈ M, ∀t ∈ T;

(3)
∑

k∈P(t)

(
Z tm

k,ij · R̂m
t,k

)
− f m

ij ≤ 0, ∀(i, j) ∈ E, ∀m ∈ M, ∀t ∈ T;
(4) λ̂tm

ij ≥ 0, ∀(i, j) ∈ E, ∀m ∈ M, ∀t ∈ T;

where R̂ and λ̂̂λ̂λ represent the primal and dual optimal point, respectively.
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We now propose the following primal-dual algorithm [22] to solve the low-level
optimization problem. It updates the primal and the dual variables simultaneously,
and moves together towards the optimal points asymptotically.

Rm
t,k(n + 1) =

[
Rm

t,k(n) + Ṙm
t,k

]+
=

[
Rm

t,k(n) + α(n) · ∂L(R, λ, λ, λ)

∂ Rm
t,k

(
Rm

t,k(n)
)]+

(7)

λtm
ij (n + 1) =

[
λtm

ij (n) + λ̇tm
ij

]+ =
[
λtm

ij (n) − β(n) · ∂L(R, λ, λ, λ)

∂λtm
ij

(
λtm

ij (n)
)]+

(8)

where n is the iteration index, α(n) and β(n) are positive step sizes, and [z]+ =
max{z, 0}. The partial derivatives of R and λλλ are given by:

Ṙm
t,k = α(Rm

t,k)

⎡
⎣∂O(Rm

t,k, f m
ij )

∂ Rm
t,k

+
∑

(i, j)∈E

(
Z tm

k,ij · λtm
ij

)⎤
⎦ (9)

λ̇tm
ij = β(λtm

ij )

⎡
⎣ ∑

k∈P(t)

(
Z tm

k,ij · Rm
t,k

)
− f m

ij

⎤
⎦ (10)

Here λtm
ij can be viewed as the congestion price at link (i, j) for the bandwidth

requirement of receiver t in layer m. It can be seen from (8) and (10) that if the
demand

∑
k∈P(t)(Z tm

k,ij · Rm
t,k) at link (i, j) for the information flow exceeds the supply

f m
ij , the price λtm

ij will rise, and decrease otherwise. Also, it is notable that all the
updating steps are distributed and can be implemented at individual links using only
local information.

(2) High-level optimization update As mentioned above, the low-level optimization
is operated under the assumption that the value of f is fixed. In this section, we discuss
how to adjust f to solve the high-level optimization problem.

Suppose λ̂tm
ij is the optimal Lagrange multiplier corresponding to the constraint in

P2a. Similar to Rt, we define fij = [ f 1
ij , · · · , f M

ij ] and f = [f11, · · · , fE]T . Also let Fij ={
fij

∣∣∣ f m
ij ≥ 0 for all m and

∑
m∈M f m

ij ≤ cij

}
, (i, j) ∈ E, and F denotes the Cartesian

product of Fij

(
(i, j) ∈ E

)
. Then the Lagrangian dual and the primal-dual algorithm

of P2b are proposed as follows:

L′(f, η, η, η) = Ô( f ) +
∑

(i, j)∈E

ηij

(∑
m∈M

f m
ij − cij

)
(11)

f m
ij (n′ + 1) =

[
f m
ij (n′) + ḟ m

ij

]+ =
[

f m
ij (n′) + a(n′) · ∂L′(f, η, η, η)

∂ f m
ij

(
f m
ij (n′)

)]+
(12)

ηij(n′ + 1) = [
ηij(n′) + η̇ij

]+ =
[
ηij(n′) − b(n′) · ∂L′(f, η, η, η)

∂ηij

(
ηij(n′)

)]+
(13)
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where n′ denotes the iteration index, and a(n′), b(n′) are positive step sizes. Through
mathematic deduction, the partial derivatives of f and ηηη are given by:

ḟ m
ij = ∂L′ (f, η, η, η)

∂ f m
ij

(
f m
ij (n′)

)
= a

(
f m
ij

) [
2 · f m

ij +
∑
t∈T

λtm
ij + ηij

]
(14)

η̇ij = ∂L′(f, η, η, η)

∂ηij

(
ηij(n′)

) = b(ηij)

[∑
m∈M

f m
ij − cij

]
(15)

Actually, ηij can be regarded as the aggregate congestion price of link (i, j). If the
consumed bandwidth f m

ij on link (i, j) in layer m cannot meet the actual requirement
of all receivers, the f m

ij will increase in the next step, or else, it will decrease. Also,
the iterations of ηij and f m

ij can be implemented in a decentralized manner.

5 Practical implementation of the distributed algorithm

When implementing the proposed distributed algorithm, each link (i, j) and each
receiver t is treated as an entity capable of processing, storing and communicating
information in a distributed computation system. Assume that the processor for
link (i, j) keeps track of variables λtm

ij and f m
ij , while the processor for receiver t

keeps track of variable Rm
t,k. A decentralized version of the proposed algorithm is

summarized in Table 1.
Note that the low-level and high-level algorithms operate at different time scales.

The former is an inner loop and operates at a fast time scale, while the latter is
an outer loop and performs at a low time scale. More specifically, the high-level

Table 1 Implementation of the proposed distributed algorithm

Initialization
sets n = 0, n′ = 0 and λtm

ij (0), Rm
t,k(0), f m

ij (0), ηij(0) respectively to some non-negative
values for all t, m, (i, j) and k.

Repeat
Updating at link (i,j) in Low-level Implementation:
Receives Rm

t,k(n) from all receivers {t|t ∈ T, and Z tm
k,ij = 1}.

Updates the congestion price λtm
ij (n) according to (8) and (10).

Broadcasts the new price λtm
ij (n + 1) to all receivers {t|t ∈ T, and Z tm

k,ij = 1}.
Updating at receiver t in Low-level Implementation:

Receives from the network the aggregate congestion price
∑

k∈P(t)

(
Z tm

k,ij · Rm
t,k

)
.

Updates the rate Rm
t,k(n) with (7) and (9).

Broadcasts the rate Rm
t,k(n + 1) to all links {(i, j)|(i, j) ∈ E, and Z tm

k,ij = 1}.
Updating at link (i,j) in High-level Implementation:

Calculates the sum λ̂tm
ij

(
f m
ij (n′)

)
= ∑

t∈T λ̂tm
ij

(
f m
ij (n′)

)
.

Updates a new f m
ij (n′) with (12) and (14).

Updates the aggregate congestion price according to (13) and (15).
Broadcast the new f m

ij (n′ + 1) to all receivers {t|t ∈ T, and Z tm
k,ij = 1}.

Until
All variables converge to the optimums.
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algorithm will not move to its step until λ̂ at the low-level converges to its optimum
value. When the algorithm converges, the generated solution will jointly optimize the
rate allocation and the transmission structure.

When the communication overhead issue [15] is taken into account, all the update
operations at both low-level and high-level iterations can utilize those variables
stored in the local node or link, except the information of the updated rate Rm

t,k(n +
1), f m

ij (n′ + 1) and the updated price λtm
ij (n + 1) that are needed to be transmitted

by extra packets. For example, according to (8), to update the Lagrange price
λtm

ij (n), the Rate Packet (RP) of receiver t carrying the rate information of Rm
t,k(n)

is only required to transmit upward along t’s paths to the subset of links {(i, j)|(i, j) ∈
E, and Z tm

k,ij = 1}. Similarly, on the basis of (7), to update the rate Rm
t,k(n), the Control

Packet (CP) containing link (i, j)’s Lagrange price λtm
ij (n) is only to be sent downward

to the subset of receivers {t|t ∈ T, and Z tm
k,ij = 1} along the paths that link belongs to.

If we adopt the float type in implementation, each rate or Lagrange price takes up
only 4 bytes, thus is negligible compared to the main video streaming traffic. Roughly
estimated, the time spent by the whole network to reach the stability is equal to the
number of iterations required for convergence multiplying the update time interval
of each iteration. It is found in [9] that an update interval which is about 2 to 3 times
the one way propagation delay of the particular receiver is sufficient. Therefore, the
entire overhead of the proposed distributed algorithm is quite small.

6 Results and discussion

In this section, we present numerical and simulation results to show the perfor-
mance of the proposed algorithm. We conduct numerical experiments on classical
butterfly network topology which has been extensively used in network coding-
based simulation studies [1, 19, 28]. The purpose of numerical solution is to evaluate
the convergence behavior of the proposed distributed algorithm. Also, we present
simulation results for a packet-level simulation with a general network topology, and
show that our algorithm achieves an overall balanced throughput and better video
quality over all receivers.

6.1 Numerical simulation results

The classical butterfly network topology, shown in Fig. 3a, consists of source S, relay
nodes Ri, and receivers Ti. The capacity and random propagation delay (between 0
and 1) of each link are marked as capacity/delay on each link. Assume the source
generates an SVC stream into three layers, with rate of 2.5 (data units/second) on
both the base layer and the first enhancement layer, and a rate of 1 on the second
enhancement layer.

Convergence behavior Figure 4 shows the assigned data rate for each receiver at
each layer during the low-level optimization, where we adopt constant step sizes with
α(n) = 0.0631, β(n) = 0.01733, a(n) = 0.51 and b(n) = 0.0155. It can be seen that all
data rates converge after 100 iterations. For instance, the total rates achieved by T1

reach within 10 % of its optimal value after 37 iterations and converge to 5.00038
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Fig. 3 Network topology associated with link capacity/delay, where a is a butterfly topology for
numerical experiment, b is a general network topology for SVC streaming based simulation

after 80 iterations. The rates achieved by T2 of two layers reach within 10 % of its
optimum after 46 iterations and converge to 4.995936 after 92 iterations.

Figure 5 shows the convergence behavior of the high-level optimization. Due to
space limit, we only show the rate evolutions of links (R1, R3), (R2, R3) and (R3, R4)

at the first enhancement layer, while other links have similar outcomes. It is observed
that the flow rates on these three links converge after 250 iterations. In addition, due
to the implementation of network coding on link (R3, R4), the sum of the flow rates
on links (R1, R3) and (R2, R3) is almost equal to the flow rate on link (R3, R4).
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Fig. 4 Evolution of the assigned rate for each receiver in the low-level optimization
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Fig. 5 The performance of the
high-level optimization
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Impact of step size The Lagrange multipliers λλλ and ηηη signal the congestion status of
the entire network. By iteratively modifying their values, the distributed algorithm
gradually reaches an optimal rate allocation solution. We now investigate the impact
of the step sizes λλλ and ηηη on the convergence speed. In contrast to the aforementioned
experiment, we adjust β(n) to 0.018, and b(n) to 0.025, with α(n) and a(n) unchange-
able. As seen in Fig. 6, in this case, the receiving rate of T2 does not converge to
the optimal point. Instead, it converges to some suboptimal solution within a quite
small neighborhood around the optimum. Since such phenomenon is likely to happen
when the constant step size is used [5], the diminishing step size becomes a better
alternative.

Fig. 6 Impact of different
fixed step sizes on
convergence behavior
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Fig. 7 Performance comparison for constant and diminishing step size

Here we let β(t) = 1
t , satisfying lim

t→∞β(t) = 0 and
∑∞

t=0 β(t) = ∞. Compared with

a constant step size, we can find in Fig. 7, that the receiving rates with a diminish-
ing step size vary smoother but converge more slowly than its fixed counterpart.
Although a fixed step size is more convenient for distributed implementation, a
diminishing step size is recommended in practice, for the rate with low and smooth
fluctuation is crucial for video quality smoothness.

Throughput performance Figure 8 compares the achievable throughput of two
receivers by the shortest path(SP) distribution tree, the LION algorithm and the
proposed algorithm. It is seen that the proposed algorithm outperforms both the
shortest path and LION algorithms. As the shortest path scheme constructs video
distribution tree with single path and does not use network coding, in contrast,
LION and our method have introduced network coding based multipath routing and
achieved significant gains in network throughput. Furthermore, for receiver T1, both
multipath algorithms can realize its max-flow capacity of 5, while for receiver T2, only

Fig. 8 Comparison of achievable throughput
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our distributed algorithm can achieve a rate of 5.942 and approximate to its max-flow
capacity 6.

6.2 Packet-level simulation results

To evaluate the received video quality using the proposed distributed algorithm, we
also conduct packet-level simulations with a general network topology, as shown in
Fig. 3b. It contains a source S, 11 relay nodes R1 ∼ R11 and 5 receivers T1 ∼ T5. The
capacity (Kbps)/propagation delay (per Kbit) is marked on each link. The numbers
of alternative paths for 5 receivers are 4, 4, 6, 1, 2, and their max-flow rates are 400,
550, 1300, 300, 400 Kbps, respectively. The configuration of parameters are shown in
Table 2.

In the packet level simulations, we use the practical random network coding [8] to
distribute the source packets of each layer. Here we assume intra-session network
coding is implemented within each layer to ensure easy operation. During data
transmission, each relay node (as well as the source node) combines its received
packets belonging to the same generation from different upstream links (or video
source packets encoded by the source node) with random linear operations over a
large Galois Field and then sends the coded packets to its downstream links. Each
destination node can correctly decode the original packets if it receives enough coded
packets. To cope with asynchronous transmission, we use the buffer model [8] to
synchronize the packet arrivals and departures. In the buffer model, packets that
arrive at a node on any of the incoming links are put into a single buffer sorted by
layer. Then, whenever there is a transmission opportunity at an outgoing link, the
number of packets of every layer in the buffer is checked and a packet is generated
containing a random linear combination of all the packets that belong to the layer
with the largest number of packets. After the generated packet is transmitted to
the outgoing link, certain old packets are flushed from the buffer according to the
flushing policy. Specially, if two layers have the same number of packets in the buffer,
the lower layer is prioritized to generate a packet for transmission.

We use four standard test sequences “Bus”, “Coastguard”, “Foreman” and “Mo-
bile” with a frame rate of 30 fps, CIF (352×288) resolution, and a GOP-length of
32 frames with IBBP... structure. The streams are generated using the Joint Scalable
Video Model 9_10 reference codec of H.264/AVC scalable extension, with 256 Kbps
on the base layer and 384 Kps, 512 Kps and 1024 Kps on the enhancement layers
by fine granularity scalability (FGS) encoding. Figure 9 shows the rate-distortion
performance, measured in average peak signal-to-noise ratio (PSNR), for the four
CIF video sequences.

Table 2 Configuration
of parameters

Parameter description Value

Step size α(n) 0.05
Step size a(n) 0.05
Step size β(n) 0.01
Step size b(n) 0.01
Galois field size of network coding 8
Generation size of network coding 50
Number of iterations 400
Update interval 5.4 ms
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Fig. 9 PSNR performance
achieved for four CIF
sequences with frame rate of
30 fps and GOP length of 32
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Throughput and transmission cost comparison Table 3 presents the number of
layers received at each receiver with different algorithms. The transmission cost for
each receiver in the base layer is shown in Fig. 10, which is the sum of each path’s
cost calculated by (2) for the base layer distribution. It can be seen that the shortest
path scheme not only achieves the lowest throughput, but brings the undesired cost
for the base layer transmission. The LION algorithm builds the distribution meshes
with a heuristic scheme and achieves a suboptimal throughput. Similar to the shortest
path algorithm, the LION also does not consider the layer synchronization of SVC
streams. Therefore, these two algorithms are not efficient for practical SVCmultirate
multicast. Conversely, the proposed algorithm makes a joint optimization on the
throughput and the transmission cost. As a result, it achieves the best throughput
performance over all receivers, meanwhile, maintains the smallest cost for the base
layer transmission. In addition, if network coding is not used in our algorithm, the
overall throughput will distinctly decrease for the prohibition of the bandwidth share
at the same layer.

Relationship between cost and delay According to the definition of the cost function
in (2), the path cost can be used to depict the end-to-end path delay. To verify
their linear relationship, we vary the playback deadline for “Bus”, “Coastguard”,
“Foreman” and “Mobile” streams from 400 ms to 500 ms. Note that we only
consider broadcasting stored video, and ‘live’ videos are beyond the scope of this
paper. Here, we suppose that packets are dropped if they do not arrive at the

Table 3 Number of layers
received at each receiver

T1 T2 T3 T4 T5 Total

Shortest path tree 2 2 3 1 2 10
(without network coding)

LION 2 3 3 1 2 11
(with network coding)

Proposed algorithm 2 3 4 1 2 12
(with network coding)

Proposed algorithm 2 2 3 1 2 10
(without network coding)
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Fig. 10 The transmission cost of the base layer for each receiver

receiver by the playback deadline. In Table 4, we show the average video quality
(in PSNR) at receiver T1 as an example. Clearly, the proposed algorithm achieves
better video quality. Note that in the shortest path or the LION scheme, the base
layer packets for T1 are dropped when the playback deadline is small, i.e. 400 ms.
Although T1 can receive higher layer packets at lower cost, it still cannot decode any
video information. As the playback deadline increases, larger packet delays can be
tolerated. When the playback deadline increases to 500 ms, the video quality of the
shortest path and LION schemes is similar to that of the proposed algorithm.

Inf luence of continuous achievable rate region Figure 11 shows the average video
quality measured as PSNR for “Mobile” stream at T2 and T3, where the aggregate
rate allocated over the network, i.e., the total rate allocated on the output links of
source node S, varies from 200 Kbps to 1.3 Mbps. Within the context of SVC, the
achievable set of layer bandwidths could be continuous with FGS. Different receivers
are able to receive data at different rates by join different multicast groups and video
streaming layers. The LION algorithm adopts a discrete layer rate control, where
a receiver should receive either a layer in whole or nothing, even if there remains

Table 4 Received average video quality of T1 measured as PSNR for four sequences

Playback deadline = 400 ms Playback deadline = 500 ms
Bus Coastguard Foreman Mobile Bus Coastguard Foreman Mobile

Shortest path 0 0 0 0 29.38 31.47 36.06 27.9
LION 0 0 0 0 29.38 31.47 36.06 27.9
Proposed algorithm 27.94 30.47 34.44 26.2 29.38 31.47 36.06 27.9
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Fig. 11 Average video quality measured as PSNR for “Mobile” stream at T2 and T3

a lot of available bandwidth. On the contrary, the proposed algorithm supports the
continuous achievable rate region and a partial subscription of the achieved highest
layer. Consequently, the network resource can be fully utilized, thus achieving a
better received video quality.

Inf luence of background traf f ic To simulate real environments of network traffic,
we generate background traffic between nodes R3 and R5 by superposing 100
ON/OFF sources of pseudo nodes which have Pareto distributions. As shown in
Fig. 3b, node BS serves as the background traffic source and node BR serves
as the background traffic receiver, then a background traffic is constructed along
BS → R3 → R2 → R5 → BR. Since this path mainly overlaps with the paths to T1

(a) (b)

(e)(d)(c)

Fig. 12 Transmission cost of T1 and T2 when background traffic is generated in network
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(a) (b)

Fig. 13 Variation of throughput over path S1 → R4 → R3 → R2 → R5 → T3

and T2, we focus on the comparison of transmission cost and throughput of these two
receivers before and after the background traffic is imposed.

As seen in Fig. 12, when the background traffic is plunged into the network, only
by using the proposed algorithm, T1 can receive two layers while T2 can receive
three layers. Moreover, the average transmission cost of the proposed algorithm
for two receivers are clearly lower than other two algorithms. For the shortest path
scheme, its transmission for the base layer consumes too much bandwidth, resulting
in insufficient bandwidth remained for the higher layers. For the LION algorithm,
it neglects the cost factor and chooses the path R3 → R2 → R5 for delivering
the base layer to T1, which mostly overlaps with the path for background traffic.
Consequently, a high bandwidth consumption occurs on path R3 → R2 → R5 that
leaves deficient bandwidth for T1 to join the first enhancement layer.

Variation of throughput Figure 13 plots the variation of instantaneous throughput
for the “Coastguard” sequence along path S1 → R4 → R3 → R2 → R5 → T3 on the
first enhancement layer when the proposed algorithm is applied. In this case, the
background traffic is constructed over the path BS → R3 → R2 → R5 → BR. As
can be found in Fig. 13a, influenced by background traffic, the path throughput drops
gradually from 145 Kbps and balances around the value of 126 Kbps. The rate update
interval for each path in this experiment is set to 0.05 s that is comparable to the end-
to-end path propagation delay [9]. It can be seen from Fig. 13b that, even within small
intervals, the throughput varies smoothly around the optimum value.

7 Conclusions

In this paper, we study the prioritized optimization problem of rate-distortion control
and network traffic for scalable video multicast. By coupling network coding and
multipath routing with multi-rate control, we propose a convex mathematical model
for constructing video distribution meshes with maximum throughput and minimum
distortion. It seeks optimal paths and associated rates with a minimum bandwidth
consumption scheme for each video layer, while considering the content priority of
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the base video layer with minimal delay. The flow control problem is formulated
into a minimization programming in which the quality variation between layers,
the transmission cost of the base layer, as well as an efficient resource utilization
encouraging path-overlapping transmissions and allowing bandwidth sharing among
different receivers for the same video layer by utilizing network coding are jointly
considered.We solve the target convex optimization problem by a fully decentralized
algorithm through decomposition and dual approach, and the convergence behavior
and benefits of the proposed algorithm are demonstrated in extensive experiments.

In this work, we assume that the video streams are distributed through a static
heterogeneous network. We propose to extend this scenario to practical peer-to-
peer cases, where the dynamics of the network (e.g. peer joining and departure)
should be considered on the basis of the application-layer multicast protocol. Also,
with the rapid development of wireless communication techniques, we believe that
scalable video streaming over various wireless networks is very important in future.
We hope to study resource optimization in wireless networks by jointly designing
channel competition and rate allocation in the next step.
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